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An Oseen-type model for swirling internal separated flows
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Abstract. The viscous, laminar, separated flow downstream of a sudden expansion in a pipe is studied. The flow
is modeled by an Oseen-type equation, but with the additional feature that the nonlinearity in the swirl is retained.
Exact solutions are obtained for a high-Reynolds-number limit and for arbitrary Reynolds number by use of an
eigenfunction-expansion procedure, in the presence of swirl. This leads to a non-standard eigenvalue problem.
When the swirl is sufficiently large, a central recirculating region is observed. The effect of the pressure gradients
on the velocity profiles and the central recirculating eddy is discussed. The low-Reynolds-number solutions go over
smoothly to the large Reynolds number solution as the Reynolds number increases. Good agreement is obtained
with the numerically computed value of the reattachment length.
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1. Introduction

The flow field of concern in this paper is sketched in Figure 1. Viscous, incompressible fluid
enters an infinitely long circular pipe of radiusR1 by way of a sudden expansion from a
symmetrically placed smaller pipe of radiusR0; the inlet flow, in general, is swirling. This
is encountered under many situations, like for instance in combustion tubes, wind tunnels,
physiological flows, etc. Let us assume that the inlet velocity profiles are given at the sudden
expansion. Our interest then is in determining the flow downstream of the expansion, assumed
to be steady and laminar, for all values of the Reynolds number, Re defined to beWmR1/ν,
whereWm is the value of the peak velocity of the Poiseuille flow far downstream.

The flow is governed by the Navier–Stokes (N–S) equations. One of the difficulties is,
of course, that the N–S equations are nonlinear and we have no general method of solving
such equations. A second difficulty is that, as the Reynolds number increases, the problems
associated with two disparate length scales come into play. Third and most importantly, at

Figure 1. Sudden expansion in a pipe.
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sufficiently high Reynolds numbers the flow is known to become turbulent; thus, although the
inlet conditions may be steady, the flow downstream is unsteady with a behavior thatappears
to be random or chaotic in character. These difficulties explain whysimplepipe flow is still an
unsolved problem in fluid mechanics.

In this paper we model the steady, swirling laminar flow in the pipe, downstream of a
sudden expansion, using equations in which the advection terms in the N–S equations have
been linearized. We are partly motivated by the fact that there is still no method available to
solve the full equations for all Reynolds numbers and partly by the fact that swirling flows
are of considerable industrial importance (see for example [1, pp. 49–65] and [2, pp. 120–
144]). Ramakrishnan and Shankar [3] showed in the plane case that model equations similar
to the ones used here yield results that agree with those of the N–S equations at low Re and
which show qualitative features very similar to those of the N–S equations for Re→ ∞.
This Oseen approximation allows one to find analytical solutions in terms of an eigenfunction
expansion over the whole range of Reynolds numbers. This feature is expected to carry over
to the axisymmetric case, but with the additional and important possibility of dealing with
swirl. We shall show that it is possible to retain a certain amount of nonlinearity pertaining to
the swirl component which is crucial in the generation of central recirculating regions.

Before proceeding it may be worth indicating what exactly one could hope to find from the
proposed model. Apart from determining the pressure-drop distribution in the pipe, one would
hope to find the length of the wall-bounded recirculating regions downstream of the expansion
and their dependence on the inlet swirl. One might also hope to find features entirely peculiar
to the existence of swirl, for examplecentral recirculating regions. The fact that all this can
be attempted for the whole range of Re makes the model worthwhile in spite of its obvious
limitations. The formulation of the present model is outlined in Section 2, solutions valid
for Re→ ∞ are deduced in Section 3 while the solutions for arbitrary Re are obtained in
Section 4.

2. Formulation

LetR be the radial coordinate,θ the azimuthal coordinate andZ the axial coordinate. Let the
corresponding velocity components beU,V andW , respectively, and letP be the pressure.
Note that all these quantities are dimensional. We normalize all lengths by the radiusR1 of
the outer pipe, all velocities by the far downstream maximum velocityWm of the Poiseuille
flow, and pressure byρW 2

m. Let u, v andw be the nondimensional velocity components and
p the nondimensional pressure. The full, steady Navier–Stokes equations in nondimensional
form are (Tritton [4, pp. 52]): (continuity)
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where the latter three represent axial, azimuthal and axial momentum, respectively. The sub-
scripts denote the partial derivative with reference to that independent variable.

2.1. MODEL EQUATIONS

Far downstream, the radial and azimuthal components of the velocity vanish. The velocity is
purely in the axial direction asz→∞, but its magnitude varies with the radius. The maximum
value of this velocity is one, because of nondimensionalization. The present model that is
linearized (except the nonlinear advection term inv) about the Poiseuille flow assumes that the
flow is advected only by this unit axial velocity. The flow is assumed to be axisymmetric. Thus,
the velocity components and pressure are assumed not to vary withθ . With this approximation,
the radial momentum equation becomes.

uz − v
2

r
= −pr + 1

Re

(
urr + ur

r
− u

r2
+ uzz

)
. (2a)

It is to be noted that the swirl velocity componentv is still nonlinear in this equation. This
gives rise to many interesting features.

The azimuthal momentum equation is

vz = 1

Re

(
vrr + vr

r
− v

r2
+ vzz

)
. (2b)

The axial momentum equation becomes

wz = −pz + 1

Re

(
wrr + wr

r
+ wzz

)
. (2c)

It may be noted that the inertial terms are still present in these equations in a modified form that
simplifies the equations considerably. Since the flow goes to Poiseuille flow far downstream,
the approximations are clearly reasonable there. However, one cannot easily justify these in the
neighborhood of the sudden expansion. In fact, thez-advection term even has the wrong sign
over part of the separated flow region near the walls, but here the heads are very small and this
may not matter much. For the plane case Ramakrishnan and Shankar [3] obtained interesting
results that were at least qualitatively correct and in a similar fashion our results appear to
show these approximations to be useful. We are able to abtain a physically realistic velocity
field in simple analytical form over the whole range of Reynolds numbers 0< Re< ∞. We
believe this provides some justification for the kind of quasi-linearization that we have used.

The pressure term in Equations (2a) and (2c) can be eliminated by cross-differentiation and
subtraction. There is an axisymmetric stream functionψ such that

w = ψr

r
, u = −ψz

r
. (3)

On substituting this in Equation (2), we get(
L− Re

∂

∂z

)
Lψ = 2 Revvz, (4)
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where

L = ∂2

∂r2
− 1∂

r∂r
+ ∂2

∂z2
. (5)

Thus, in summary, Equations (2b) and (4) constitute the model that we shall be employing
to describe approximately the swirling flow downstream of a sudden expansion in a pipe. The
model is Oseen-like in that the acceleration terms are approximated by uniform advection in
the axial direction. However, some effect of nonlinearity is retained, with significant effect,
through the swirl term in the radial momentum equation. As far as the boundary conditions
are concerned, we assume that there is no slip on the side walls, and that the velocity field
takes on the values prescribed initially atz = 0; far downstream the field has to develop into
the appropriate Poiseuille flow.

2.2. SWIRL COMPONENT

The swirl component of the velocityv satisfies Equation (2b), which is second order inz. This
equation reveals that the azimuthal velocity component completely decouples from the other
two. On assuming a solution of the formv(r, z) = v̂(r)e−lz, we get

(rv̂r )r − v̂
r
+ (l2+ l Re)rv̂ = 0. (6)

The hat denotes that the relevant quantity varies only withr and not withz.
The solution for the swirl is [4]̂v = J1(

√
l2+ l Rer) whereJn(r) is the Bessel function of

the first kind of ordern. Clearly,v̂ vanishes at the wall,i.e. atr = 1. HenceJ1(
√
l2+ l Re) =

0. The functionJ1(r) has infinitely many zeros, denoted here byδn. As a result,l also can take
infinitely many possible values. They are denoted byln. We have

√
l2n + ln Re= δn. The full

swirl as a function of bothr andz is given by

v(r, z) =
∞∑
n=1

KsnJ1(δnr)e−lnz, (7)

whereK is the amplitude of the inlet swirl andsn is thenth expansion coefficient. Atz = 0,
the nondimensional swirl has an inlet profilev0(r). It is here taken to be

v0(r) = K(r3 − 2r0r
2+ r2

0r), (8)

wherer0 is the inlet radius. It is generally taken to be 0·5 unless specified otherwise. For this
inlet swirl profile, the swirl number can be computed from the expression (see, for example
Sloanet al. [5])

S =
∫ r2

r1

r2v0(r)w0(r)dr

/(
r2

∫ r2

r1

rw2
0(r)dr

)
. (9)

A swirl amplitude of one roughly corresponds to a swirl number of five. The exact ratio is
5·02232143.

Experiments [5] show that the swirl initially has a solid body rotation character, reaches
a maximum and then decreases in some manner. For the inlet swirl profile taken here, the
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linear term dominates at smallr. After the maximum, the decay is taken to be polynomial for
simplicity.

It can be shown that the expansion coefficients can be evaluated from the expression

sn = 2
∫ r0

0
rv0(r)J1(δnr)dr

/
(K(J0(δn))

2). (10)

In general, the larger the number of terms in the expansion (10), the smaller is the maximum
error in satisfying the inlet profile. But this decrease in error is not monotonic.

3. An approximation for large Reynolds number

The general model equation that has been proposed here is quasi-linear. Even in the plane
case, in the absence of swirl, where the equations are linear, Ramakrishnan and Shankar [3]
found that the solution leads to a nontrivial, nonstandard eigenvalue problem. Naturally, we
should expect the swirling flow considered here to lead to an even more complicated situation.
It is shown in [3] that there is a very natural, ‘boundary-layer’-like approximation that could
be applied for Re→ ∞. We expect a similar approximation to be valid in our case too.
Moreover, this analysis provides the basis functions in terms of which the general solutions
can be expanded. Hence, we will discuss this limiting case before considering the general
situation.

3.1. NO SWIRL

The length scale alongr is assumed to be of order unity and that alongz is assumed to be the
Reynolds number Re. The functionsψ andw are assumed to be of order one, andu to be of
order 1/Re, and to leading order, the governing equations become(

L1− Re
∂

∂z

)
L1ψ = 2 Revvz, (11)

where the operatorL1 is

L1 = ∂2

∂r2
− 1

r

∂
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.

On assuming a solution of the formψ = e−λzφ(r), we have the eigenvalue problem

(L1+ λRe)L1φ = L1(L1+ λRe)φ = 0, φ(1) = φ′(1) = 0 (12)

with the solution

φn = r2 − rJ1(
√
λn Rer)

J1(
√
λn Re)

, (13)

where theλ’s satisfy the eigenvalue condition

√
λReJ0(

√
λRe)

J1(
√
λRe)

= 2. (14)
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At these eigenvalues are real, like in the plane case of [3].
Sufficiently far downstream, the stream functionψ̂ should become that for Poiseuille flow:

ψ̂∞(r) = cr2(2− r2). (15a)

Here,c is determined by the volumetric flow at the inlet.
The eigenfunctions given by Equation (13) form a complete set. Hence, at other points, the

general stream function as a function ofr andz can be expanded in terms of these functions.
Using the property of linear superposition of the stream function, we have

ψ(r, z) = ψ̂∞(r)+
∞∑
n=1

anφn(r)e−λnz, (15b)

whereλn = α2
n/Re andφn(r) = r2− rJ1(αnr)/J1(αn).

At the inlet, the stream function is assumed to correspond to a parabolic axial velocity
profile that vanishes forr0 6 r 6 1. Hence

ψ̂0(r, r0) = c
(
r

r0

)2
(

2−
(
r

r0

)2
)
, 06 r 6 r0. (15c)

It follows from mass conservation that thec in this expression is the same as that which
appears inψ̂∞(r).

The inlet condition should be applied strictly at a distance that is sufficiently far and up-
stream to the expansion. But at large Reynolds number, the upstream influence is negligible.
Smith [6, 7] shows that the upstream influence becomes considerable only for very small
Reynolds numbers. Hence the inlet condition is applied just before the expansion.

The eigenfunctions, given by Equation (13) are orthogonal. This can be used to get an
expression in closed form for the coefficients. We have

an =
−2

∫ 1

0
(ψ0(r)− ψ∞(r))J1(αnr)dr

J1(αn)
. (16)

The coefficients can also be computed by the constraint that the error in satisfying the inlet
condition by minimized. This is the ‘Least Squares Procedure’ that is discussed in Ramakrish-
nan and Shankar [3]. This gives coefficients that agree very well with those given by Equation
(16), as can be seen in Table II.

We computed the inlet stream function by taking twenty-five terms in the expansion given
by Equation (15b). It is seen that this agrees very well with the exact stream function given by
Equation (15c). Computations show that, as more and more terms are taken in the expansion,
the maximum error in satisfying the inlet profile decreases monotonically.

Plots of the lines of constant axisymmetric stream function are very similar to those of the
plane duct of Ramakrishnan and Shankar [3].

The limiting streamline that separates from the top corner of the inlet reattaches at a point
on the outer pipe (Figure 1). The axial distance from the inlet to this point is called the
reattachment (recirculation) length. The flow inside the recirculating region is very weak.
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Figure 2. Variation of the corner reattachment length with inlet radius as Re→∞,K = 0.

This is a dead water region, and the corner recirculation is not seen. This does not happen at
finite Reynolds number, as will be seen in Subsection 4.1.

Figure 2 shows that the corner reattachment length decreases as the inlet radiusr0 in-
creases. These values are almost the same as that in Figure 3 of Ramakrishnan and Shankar
[3]. The smaller the value ofr0, the larger is the reattachment length. This is also observed in
the experiments of Chaturvedi [8], Back and Roschke [9] and Abujelala and Lilley [10], and
the computation of Changet al. [11].

3.2. SWIRLING FLOWS AT LARGE REYNOLDS NUMBER (Re→∞)
The governing equation when swirl is present is now(

L1− Re
∂

∂z

)
L1ψ = 2 Revvz, (17)

where

L1 = ∂2

∂r2
− 1

r

∂

∂r
.

By using linear superposition, the total streamfunction is broken up into two parts, one that
does not depend on swirl, and another which does. The former was solved and discussed in
the previous sub-section. The streamfunction that is solved in Equation (17) is the latter one.

On substituting the expression for the swirl, given by Equation (7), in Equation (17), we
get(

L1− Re
∂

∂z

)
L1ψ = −2

∞∑
m=1

∞∑
n=1

K2δ2
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2
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Let
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∞∑
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∞∑
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2
mnz
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)
, (19a)

where

δ2
mn = δ2

m + δ2
n. (19b)
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Figure 3. Lines of constant axisymmetric streamfunction, Expansion ratio= 2,Re→∞.
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Equations (18) and (19) imply(
d2

dr2
− 1

r

d

dr
+ δ2

mn

)(
d2

dr2
− 1

r

d

dr

)
hmn = −2K2smsnδ

2
nJ1(δmr)J1(δnr) (20)

for eachm andn. This is a fourth-order inhomogeneous differential equation. The solutions
to the homogeneous part of this equation can be shown to bew1(r) = d whered is a constant,
w2(r) = r2, w3(r) = rJ1(δmnr) andw4(r) = rY1(δmnr). The particular solution to the
inhomogeneous Equation (20) is obtained by the method of variation of parameters (Dettman
[12, pp. 300–301]), in terms of these four solutions. The final expression for the total stream
function is

ψ(r, z) = ψ̂∞(r)+
∞∑
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∞∑
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)
, (21)

where

hmn(r) = c1(r)+ (c2(r)+ bmn)r2 + (c3(r)+ cmn)rJ1(δmnr)+ c4(r)rY1(δmnr),

c1 = −K2
∫ r
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D(r) = w′′′4 (w′′2w′3− w′2w′′3)− w′′′3 (w′′2w′4− w′2w′′4).
Side-wall boundary conditions determine the constantsbmn and cmn. Equation (16), which
gives an expression for the coefficients, gets modified to

ak = −2

J1(αk)

∫ 1

0
[ψ0(r, r0)− ψ̂∞(r)−

∞∑
m=1

∞∑
n=1

hmn(r)]J1(αkr)dr. (22)

It is interesting to note that the full stream function depends only on the square of the swirl
amplitudeK2, and not onK.

Figures 3(a) to 3(d) show the two-dimensional steamline plots of swirling flows,i.e. lines
of constant axi-symmetric streamfunctionψ , whenK is 2·0,2·67,3·0 and 5·0, respectively.
Although inlet swirl does modify the sudden expansion flow, for example by affecting the
reattachment length and causing downstream swirl, at relatively small amplitudes the qualita-
tive features remain the same, as seen in Figure 3(a). However, when the inlet swirl amplitude
is comparatively large, a qualitatively new feature appears,i.e. a central recirculation region.
When the inlet swirl amplitude is 2·0, there is no central recirculation. When the amplitude is
increased to 2·67, computations show that, over an interval ofz sufficiently close to the axis
the axial velocities are negative. Hence, there is an onset of central recirculation, even though
it is not big enough to be seen in the figure. It becomes visible when the swirl amplitude is
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Figure 4. Three dimensional streamlines following two particles plotted using CFD view.K = 5·0. (i) particle
inside the central recirculation region; (ii) particle outside the central recirculation region.

increased further. It is also seen that the central recirculation grows progressively as the swirl
amplitude is increased. These figures are qualitatively very similar to those of Ahmed [13].
In these figures, the corner recirculation that is expected (because of sudden expansion) is
squeezed close to the side wall, as the axial length is normalized by the Reynolds number Re,
like the case where there was no swirl.

If the nonlinearv2 term is dropped in the radial momentum Equation (2a), the radial
and azimuthal momentum equations decouple. The resulting system is similar to thev = 0
case, where there is no central recirculation. Hence, it is this nonlinear term that brings in
interesting features. Some idea of the richness of this flow can be obtained by looking at the
three-dimensional plots.

Figures 4(a) and 4(b) show the three-dimensional streamlines that we plotted using the
commercial software CFD View. These are obtained by tracking particles released at various
positions. Figure 4(a) shows that, when the particle is inside the central recirculation zone
(trajectory i), it moves on the inside of the torus and comes back on the outer surface. It is
to be noted that the trajectory does not return on itself. Thus, the motion on the torus can
be in closed or open orbits, though on a finite-precision machine, only closed orbits are seen,
however large the closing period may be. When the particle is initially outside the recirculation
region (trajectory ii), it goes out of thez interval. Figure 4(b) shows a three-dimensional
view of this picture. The inner and outer regions of the torus are seen very clearly. When the
integration is done for a larger period, the trajectories fill out the torus more and more.

Figures 5(a) and 5(b) show certain quantitative predictions that the model makes about the
effect of swirl. Figure 5(a) shows that the corner reattachment length decreases with increase
in the swirl. It is interesting to note that, when the swirl amplitude is 0·64, this decrease is
very steep. An increase in the swirl amplitude squeezes the corner recirculation region. Hence
this effect is understandable. This also agrees qualitatively with the observation of Abujelala
and Lilley [10].

If the critical swirl is defined as a dimensionless swirl at which the central eddy first ap-
pears, Figure 5(b) shows that this decreases with increasing inlet radiusr0. For a
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Figure 5(a). Variation of the corner reattachment
length with swirl amplitude as Re→∞, r0 = 0·5.

Figure 5(b). Variation of critical non-dimensional
swirl with inlet radius as Re→∞.

given far-stream velocity, decreasing the inlet radiusr0 increase the inlet axial velocity. The
inlet swirl has to be comparable with the inlet axial velocity for the central eddy to be seen.
Hence, the critical swirl varies inversely with the inlet radius.

Calculations show that the pressure field is strongly dependent on the strength of the inlet
swirl. As was already pointed out above, whenK > 2·67, a central recalculation bubble exists
very close to the entry. It may therefore be of some interest to examine the axial pressure
gradient as a function ofz at given radial locations. This is done in Figure 6 forr = 0·05
and 0·8. Note that in both figures Re∂p/∂z is plotted againstz/Re for four values of the swirl
amplitudeK.

The central recirculation bubble is incipient atK ≈ 2·67 when the expansion ratio is
two. Figure 6(a) shows exactly the pressure gradient that we would expect in the flow near
the axis of the pipe in the absence of swirl. The flow is expanding to fill the pipe and as
a consequence the fluid near the axis suffers a continuous deceleration. As a consequence,
the pressure gradient is positive, decreasing, till far downstream where ultimately it takes on
the negative value determined by the Poiseuille flow there. WhenK = 1, the situation is
somewhat different, with a much more rapid decay of the pressure gradient to a minimum,
followed by an increase and then a more gradual decay to the ultimate value. ForK = 2 and
3 the situation is similar, except that the minimum is now negative and, consequently, there
is an increase to the ultimate asymptotic value. It is of some importance to note that when
K = 3, the interval 0·0002< z/Re< 0·012 actually lies inside the recirculation bubble. We
will point out the importance of this later, after we have considered the velocity profiles. Note
that the range in this figure was restricted toz/Re< 0·04 since we wished here to emphasize
the field inside the bubble. As regardsr = 0·8, we only wish to point out that the profile in (a)
is connected with the corner recirculation, which is absent forK > 1.

We now consider the distribution of the axial velocity componentw(r, z) close to the
sudden expansion. In Figures 7(a)–7(c), this component is plotted as a function ofr at five
z-stations for three different values of the inlet swirl. WhenK = 2 we observe a pattern in
the profiles that only gets intensified asK increases. Even whenz/Re is as small as 0·001,
the velocity profile shows a dip on the axis indicating a deceleration there. Note that with our
normalizationw is always 4 on the axis atz = 0. Asz increases we note that, forr less than
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Figure 6. Variation of axial pressure gradient withz at r = 0·05 & 0·8 as Re→∞, r0 = 0·5.

an approximate value of 0·4, there is a deceleration of the flow which is most pronounced at
the axis, while forr > 0·4 there is an acceleration of the flow. Although this cannot be seen
from the figure, note that for sufficiently largez the profiles get gradually transformed to the
Poiseuille form, with a maximum unit velocity on the axis and a monotonic decay to zero on
the wall. The profiles, it may also be observed, are normal at the axis, as indeed they must be.

In Figure 7(b) the profiles shown are for a swirl amplitude of 2·67. This is the approximate
value at which the central recirculation bubble is incipient. The profiles are very similar to
those shown in Figure 7(a), except for one crucial difference: now the velocity on the axis is
less than one forz/Re> 0·002. In fact, at a particular axial station the velocity goes to zero.
Of course, beyond this the fluid near the core has to accelerate to its asymptotic value of 1.
Thus, the fluid near the core initially suffers a deceleration and then undergoes an acceleration
to its final value for downstream. We can now guess what will happen whenK is increased
further to 3, (Figure 7(c)). Now the initial deceleration at the axis continues until the velocity
on the axis is actually negative before accelerating to its final value.

The most interesting feature of these swirling flows is, without doubt, the formation of a
central recirculation bubble when the swirl amplitude is sufficiently high, just like the observa-
tion of vortex breakdown in confined geometries when the swirl exceeds a critical value, as in
Suematsuet al. [14], Uchidaet al. [15], Eshudier [16], Delery [17], Shtern and Hussain [18],
among others. While we connot claim to be able to give a fully self-contained explanation for
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Figure 7. Axial velocity profiles as a function ofr at differentz stations as Re→∞, r0 = 0·5.

this phenomenon, the axial velocity profiles and pressure gradients discussed earlier suggest
a reason for the existence of these special eddy structures and their nature. Figures 7(a)–7(c)
clearly show that with swirl the fluid near the pipe axis suffers a deceleration which increases
with increased swirl amplitude. This deceleration is over and above the central deceleration
in a swirlless flow that is necessary to account for the fluid that is being entrained by the
high-speed inlet flow.

Two important facts are to be noted:

(a) the increased central deceleration withK,

(b) the absence of any significant deceleration forr ≈ 0·4.
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Now recall the radial momentum Equation (2a). For a fixed large Reynolds number, asK

increases the dominant terms in the equation will be the centripetal term and the radial pressure
gradient over a significant portion of the pipe, away from the axis and not too close to the
wall. In other words, this implies that the pressure field will be determined primarily by the
swirl velocity. Since the swirl velocity decays very little (at high Reynolds numbers) near
the inlet, this also implies that the axial pressure gradient in these regions, which are swirl-
dominated, is negligible. We can then argue from thez-momentum equation that there is little
axial deceleration in these layers. In other words, with increased swirl, some layers of fluid
away from the axis will, on account of their ‘swirling inertia’, travel downstream with little
deceleration. But, while this happens, the layers near the wall still have to be accelerated, by
viscous shear. Since now the middle regions do not decelerate as explained above, the core
region where there is little swirl now has to decelerate more than before. With increasedK,
the contribution from the core increases, until negative velocities are reached and the bubble
is formed. This is by no means a full explanation, but it appears that this does at least explain
why central deceleration is necessary with increasedK. This is also seen in Brown and Lopez
[19] for axisymmetric flows, where it is shown that the centripetal force due to the swirl
that balances the radial pressure gradient leads to an adverse pressure gradient near the axis.
Computations reveal that the azimuthal component of vorticity becomes negative on the axis
for 0·002< z/Re 0·012 during the onset of central recirculation.

The central recirculation is seen only at large Reynolds numbers (in the presence of suffi-
ciently large swirl) and not at small Reynolds numbers, as will be noted in Section 4. Hence,
this is primarily an inviscid phenomenon. Nevertheless, the pressure profiles in Figure 6 tell
us something important about the role of viscosity in the dynamics of the recirculating region.
This is best seen from Figure 6d, for the caseK = 3. Here the bubble lies approximately
in the region 0·002 < z/Re < 0·012. It will be abserved that in this interval the pressure
gradient is negative throughout. But, at this radial station, the axial velocity in the bubble,
from Figure 3c, starts out positive, goes to zero and then remains negative all the way to the
other side (downstream side) of the bubble boundary. This means that∂w/∂z is negative over
at least a portion of the bubble. Since the pressure gradient is negative throughout, this implies
that the viscous terms must play a role in the dynamics of the bubble, even at high Reynolds
numbers.

4. Solutions for arbitrary Reynolds number

The purpose of this paper is to formulate a model that works atall Reynolds numbers, and
goes smoothly to the limiting form discussed in the previous section. Hence, the general case,
valid for arbitrary values of the Reynolds number, will be taken up.

4.1. NO SWIRL

The governing equation here is(
L− Re

∂

∂z

)
Lψ = 0, L = ∂2

∂r2
− 1

r

∂

∂r
+ ∂2

∂z2
. (23)

When this is compared with the previous case, where the Reynolds number was large, there
is an additional term∂2/∂z2 in the linear operatorL. Hence, this is a second-order equation
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Figure 8. Distribution of eigenvalues in the first quadrant of the complex plane.

in z. Two conditions will have to be specified at the inlet. One of these is the axial velocity,
as before. In additional, the radial velocity profile is also specified. It is taken to be identically
zero at the inlet.

A solution of the formψ(r, z) = φ(r)e−βz is substituted in Equation (23). The eigenvalue
β appears in a nonlinear manner here. This implies that it is complex in general. The expres-
sionsrJ1(βr) andrJ1(

√
β2+ β Rer) are obtained as the solutions of the two second-order

partial differential equations. The wall boundary conditions imply that the eigenvalues satisfy
the condition

J1(β)

βJ0(β)
= J1(

√
β2+ β Re)√

β2 + β ReJ0(
√
β2 + β Re)

. (24)

If β is an eigenvalue,−β andβ∗ are also eigenvalues. The additional physical constraint of
the boundedness of solutions restricts the relevant eigenvalues to be only in the first quadrant
of the complex plane. As in the plane case discussed in Ramakrishnan and Shankar [3], there
is an upper bound to the imaginary part of an eigenvalue with a given real part. This can be
verified by the principle of an argument [12, pp. 211–213].

The eigenvalues of the plane case, given in Ramakrishnan and Shankar [3], act as good
starting values to compute the present ones. They are refined by a Newton–Raphson procedure
as before. To check that no eigenvalues are missed, the principle of the argument is used to
find the total number of eigenvalues within a given region in the right half of the complex
plane.

Figure 8 shows the distribution of eigenvalues for Re= 1,10,100 and 1000. At Re= 1 all
eigenvalues are complex. When the real parts of these eigenvalues are sufficiently large, the
eigenvalues are equally spaced. Both the real and imaginary part keep increasing monotoni-
cally. The same is true when Re= 10, except that the first eigenvalue is real. But at Re= 100
the pattern is different. There is some sort of oscillation, and the amplitude appears to become
bigger when the real part increases. As the Reynolds number Re increases, more and more real
eigenvalues are found. They tend to crowd near the origin. But even around 90 there are real
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eigenvalues. No order is apparent in their distribution. At Re= 1000, the complex eigenvalues
have lesser order. Table I shows the first twenty-five eigenvalues (ordered according to the real
part) when Re is 1, 10, 100 and 1000

The eigenfunctions are given by

φk(r) = rJ1(βkr)−
J1(βk)rJ1(

√
β2
k + βk Rer)

J1(

√
β2
k + βk Re)

. (25)

At a finite Reynolds number Re, both real and complex eigenvalues are found in general. Let
there beNr real eigenvaluesαk with real eigenfunctionsφk(r) andNi complex eigenvaluesβk
with complex eigenfunctionsχk(r). By superposition the full axisymmetric stream function
is given by

ψ(r, z) = ψ̂∞(r)+
Nr∑
k=1

akφk(r)e−αkz +Re

(
Ni∑
k=1

bkχk(r)e−βkz
)
. (26)

The coefficientsak andbk are determined by the constraint that at the expansionz = 0, the
inlet streamfunctionψ̂0(r) is reproduced, and the radial velocity profile is identically zero.
Unlike in the previous section, these complex eigenfunctions are not orthogonal. Hence the
method of least squares has to be used to find the coefficients.

Figure 9(a) shows the lines of constant axi-symmetric streamfunction when the Reynolds
number Re is 1. Unlike the case where the Reynolds number was large, the corner recirculation
region can be resolved very well. Except near the expansion, all the streamlines are almost
parallel.

4.2. SWIRLING FLOWS AT ARBITRARY REYNOLDS NUMBER

Here the governing equation is(
L− Re

∂

∂z

)
Lψ = 2 Revvz. (27)

After substituting Equation (7) for the swirl, we get the right-hand side of Equation (27) to be

−2 ReK2
∞∑
m=1

∞∑
n=1

smsnlnJ1(αmr)J1(αnr)e−(lm+ln)z,

whereln = (−Re+√Re2+ 4δ2
n)/2. Let lmn = lm + ln. On assuming a solution of the form

ψ =
∞∑
m=1

∞∑
m=1

Hmn(r)e−lmnz (28)

and substituting this in Equation (27), we get
∞∑
m=1

∞∑
n=1

(
d2

dr2
− 1

r

d

dr
+ l2mn + lmn Re

)(
d2

dr2
− 1

r

d

dr
+ l2mn

)
Hmn e−lmnz

= −2 ReK2
∞∑
m=1

∞∑
n=1

smsnlnJ1(αnr)J1(αmr)e−lmnz. (29)
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Table 1. The first 25 eigenvalues for Re= 1, 10,100 and 1000.

k Re = 1 Re = 10 Re = 100 Re = 1000

1 4·231 + 1·444i 2·470 4·012 + 0·097i 0·003

2 4·231 − 1·444i 4·277 + 0·317i 4·012 − 0·097i 0·007

3 7·453 + 1·706i 4·277 − 0·317i 5·626 0·135

4 7·453 − 1·706i 7·322 + 0·903i 7·022 + 0·397i 0·219

5 10·631 + 1·874i 7·322 − 0·903i 7·022 − 0·397i 0·322

6 10·631 − 1·874i 10·390 + 1·128i 8·636 0·446

7 13·794 + 1·999i 10·390 − 1·128i 10·232 + 0·464i 0·589

8 13·794 − 1·999i 13·480 + 1·271i 10·232 − 0·464i 0·752

9 16·950 + 2·099i 13·480 − 1·271i 12·250 0·934

10 16·950 − 2·099i 16·583 + 1·375i 13·622 + 0·249i 1·136

11 20·102 + 2·182i 16·583 − 1·375i 13·622 − 0·249i 1·358

12 20·102 − 2·182i 19·695 + 1·458i 16·291 + 0·524i 1·600

13 23·251 + 2·254i 19·695 − 1·458i 16·291 − 0·524i 1·861

14 23·251 − 2·254i 22·813 + 1·528i 18·210 2·142

15 26·398 + 2·316i 22·813 − 1·528i 19·918 + 0·419i 2·443

16 26·398 − 2·316i 25·936 + 1·587i 19·918 − 0·419i 2·764

17 29·545 + 2·371i 25·936 − 1·587i 22·675 + 0·665i 3·106

18 29·545 − 2·371i 29·063 + 1·639i 22·675 − 0·665i 3·476

19 32·690 + 2·421i 29·063 − 1·639i 25·432 3·832i + 0·095

20 32·690 − 2·421i 32·192 + 1·686i 25·521 3·832i − 0·095

21 35·836 + 2·467i 32·192 − 1·686i 27·137 4·210

22 35·836 − 2·467i 35·323 + 1·728i 29·320 + 0·614i 4·638

23 38·980 + 2·508i 53·323 − 1·728i 29·320 − 0·614i 5·078

24 38·980 − 2·508i 38·455 + 1·767i 32·165 + 0·781i 5·537

25 42·124 + 2·547i 38·455 − 1·767i 32·165 − 0·781i 6·017

Consider now a particular component ofm andn. The solutions of the homogeneous equation
areW1 = rJ1(lmnr),W2 = rY1(lmnr),W3 = rJ1(kmnr) andW4 = rY1(kmnr) wherekmn =√
lmn(lmn + Re). The solution of the inhomogeneous equation is again obtained by the method

of variation of parameters. The expression for the full streamfunction is

ψ(r, z) = ψ̂∞(r)+
∞∑
m=1

∞∑
n=1

Hmn(r)e−lmnz +
Nr∑
k=1

akφk(r)e−αkz

+Re

(
Ni∑
k=1

bkχk(r)e−βkz
)
, (30)

where

Hmm(r) = (C1(r)+ Bmn)W1(r)+ C2(r)W2(r)+ (C3(r)+ Cmn)W3(r)+ C4(r)W4(r),

C1(r) = K2
∫ r

0

D1T1(r)dr

Den(r)
, C2(r) = K2

∫ r

0

D2T1(r)dr

Den(r)
,
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Figure 9. Lines of constant axisymmetric streamfunction Expansion ratio= 2,Re= 1·0.

C3(r) = K2
∫ r

0

D3T1(r)dr

Den(r)
, C2(r) = K4

∫ r

0

D4T1(r)dr

Den(r)
,

T1(r) = −2 ReK2
∞∑
m=1

∞∑
n=1

smsnlnJ1(αnr)J1(αmr)e−lmnz,

Den(r) = D1W
′′′
1 −D2W

′′′
2 +D3W

′′′
3 −D4W

′′′
4 ,

D1 =

∣∣∣∣∣∣∣∣
W2 W3 W4

W ′2 W ′3 W ′4
W ′′2 W ′′3 W ′′4

∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣
W1 W3 W4

W ′1 W ′3 W ′4
W ′′1 W ′′3 W ′′4

∣∣∣∣∣∣∣∣ ,
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Figure 10. Limiting streamline for various Re. No Swirl,r0 = 0·5.

D3 =

∣∣∣∣∣∣∣∣
W1 W2 W4

W ′1 W ′2 W ′4
W ′′1 W ′′2 W ′′4

∣∣∣∣∣∣∣∣ , D4 =

∣∣∣∣∣∣∣∣
W1 W2 W3

W ′1 W ′2 W ′3
W ′′1 W ′′2 W ′′3

∣∣∣∣∣∣∣∣ .
The constantsBmn andCmn are determined by the side-wall boundary conditions, as before.

For small swirl the flow is qualitatively very similar to the plane case. When the swirl
amplitude is increased to 1 at Re= 1, an additional recirculation region begins to appear at the
corner, as seen in Figure 9(b). This is similar to the experimental observation of Durrettet al.
[20]. Figure 9(c) shows that, when the swirl amplitude is made 2, this additional recirculation
region becomes bigger. Figure 9(d) resolves the structure of this inner recirculation region
when the swirl amplitude is made 3. Increasing the swirl tends to enlarge these secondary
regions and intensify them. Moffatt [21] showed that, in general, there will be an infinite num-
ber of corner eddies of diminishing size and intensity. There is no corresponding theorem in
the axisymmetric or three-dimensional case (even though Liu and Joseph [22] present Stokes
flow toroidal vortices in a conical trench), but by analogy one would expect a similar result to
hold. But it is hard to say whether these are related to the Moffatt eddies or whether they are
due to swirl alone.

Figure 10 shows that as the Reynolds number Re increases, the limiting streamline(ψ = 1)
converges uniformly to the high-Re result. As Re increases, more and more coefficients be-
come real. The coefficients themselves converge to that of the high-Re approximation. These
results show that the high-Re approximation is valid.

Figure 11(a) shows that at sufficiently large Re, in the absence of swirl,zre/Re reaches an
asymptotic limit of 0·0188. This implies that the increase ofzre with Re at sufficiently large Re
is linear. This agrees with the observations of Back and Roschke [9] and Abujelala and Lilley
[10] for the axisymmetric case. It may be noted that Ramakrishnan and Shankar [3] also get
the same result for the planar case. However, Dennis and Smith [23] find that the increase in
the corner reattachment length with Re is logarithmic for the flow through a two-dimensional
symmetric constriction. For comparison, the reattachment lengths have also been computed
using a Navier–Stokes code (see, for example, Majumdaret al. [24]). Figure 11(b) shows the
analytical and the computed values for a top-hat inlet profile of the axial velocity. Very good
agreement is seen, even at a Reynolds number of 1000. Computation of the reattachment
lengths for a parabolic inlet profile of the axial velocity is not available. But, it is seen that the
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Figure 11. Variation of corner reattachment length with Re, No Swirl,r0 = 0·5.

analytical values of the reattachment lengths for the parabolic and top-hat inlet profiles of the
axial velocity do not differ much.

The notion of comparing the results of our model with those found in experiments should
be placed in proper perspective. The present model is a linearized version of the steady
Navier–Stokes equations and the solutions found are intrinsically laminar in nature. Most of
the experimental results that are referred to deal with turbulent flows, whose mixing properties
are so different from those of laminar flows that we cannot expect to find anything more than
qualitative similarity. This cannot be helped; one could, alternatively, refrain from dealing
with the experimental data altogether; but this would lead one to lose the insights that can be
gained from them. A comparison that would be entirely meaningful is one with the results
of laminar calculations based on the full, steady Navier–Stokes equations. This was done
with reasonable success in the plane case by Ramakrishnan and Shankar [3]. They consider
Hung and Macagno [25] who use a numerical finite-difference method and are limited in
Reynolds number, and Kumar and Yajnik [26] who derive a boundary-layer-like limit equation
for high Reynolds numbers. However, we have not found such calculations for the swirling
flows considered here.

5. Conclusion

The principal result of this paper has been the suggestion of a quasi-linear model for laminar,
swirling, internal separated flows that can be solved exactly for all Reynolds numbers. This
is useful, as the Navier–Stokes equations themselves are intractable analytically, except for
Re→ 0, even for the simple geometry considered here. In fact, as far as we know, there is
no other model that works even qualitatively over the whole range of Reynolds numbers. The
model no doubt has its limitations, the principal one being the restriction to laminar flows.
All real flows are turbulent at sufficiently high Reynolds numbers and so the model, which
presumably approximates the possible laminar solutions of the Navier–Stokes equations, can
at best reproduce only the qualitative features of real flows. It should also be pointed out that
the quasi-linearization of the convective terms, in the spirit of the Oseen equations, makes
the model inaccurate in the near field close to the sudden expansion. It may be surprising
that, in spite of all these obvious limitations, the model yields fields that display many of the
important features of swirling internal separated flows.

Even though the present model is Oseen like, there are differences too:
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Table 2. The first 25 coefficients for the representation of the inlet stream-
function, obtained by least squares procedure and by the use of orthogonality.
K = 0, r0 = 0·5,Re→∞.

n an an n an an

Least squares Orthogonality Least squares Orthogonality

1 6·33018E-05 6·33016E-05 14 −8.21667E-08 −8.15338E-08

2 −1·21821E-05 −1·21822E-05 15 −3·26059E-08 −3·37946E-08

3 −3·53354E-06 −3·53384E-06 16 5·62444E-08 5·71284E-08

4 2·38513E-06 2·38504E-06 17 2·24561E-08 2·09732E-08

5 8·27043E-05 8·26653E-07 18 −4·01762E-08 −3·89590E-08

6 −8·40242E-07 −8·40232E-07 19 −1·61155E-08 −1·79966E-08

7 −3·10649E-07 −3·11143E-07 20 2·96906E-08 3·13698E-08

8 3·88698E-07 3·88822E-07 21 1·19529E-08 9·46782E-09

9 1·48348E-07 1·47726E-07 22 −2·25587E-08 −2·01331E-08

10 −2·10751E-07 −2·10487E-07 23 −9·10836E-09 −1·27134E-08

11 −8·19429E-08 −8·27174E-08 24 1·75401E-08 2·15300E-08

12 1·26826E-07 1·27254E-07 25 7·09899E-09 −3·13418E-10

13 4·99087E-08 4·89482E-08

• Far downstream, the Poiseuille flow has a velocity that varies withr. The actual flow is
advected by this non-uniform velocity, but it is implicit assumption of this model that this
can be looked upon as being advected by a unit axial velocity. It is interesting to note that,
in spite of this assumption, the model predicts the qualitative features of the actual flow.
• The swirl component of the velocity introduces nonlinearity into this model. This gives

rise to many interesting features. It is seen that, when there is no swirl, the three momen-
tum equations are completely linear, and the axi-symmetric problem is similar to the plane
case, where there is no central recirculation (Ramakrishnan and Shankar [3]). Hence, it
is the swirl that brings in the possibility of central recirculation, which is a ubiquitous
feature in vortex breakdown, combustors, etc. This sheds light on the importance of swirl
in understanding these complex phenomena.
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